IPv6マルチホーム用アドレス(PI)割り当てについて

2006.9.11 IPv6 Multihoming Workshop (v1.0) 外山 勝保(NTT)

Outline

- □ IPv6マルチホーム用プロバイダ非依存なアドレス空間(PI空間)に関して
 - 1. 提案の背景
 - 2. 提案に当たっての議論
 - 3. APNIC提案内容と結果

IPv6プロバイダ非依存なアドレス空間に関する提案の背景

- □ 問題意識
 - IPv6インターネット上でビジネスするにあたり, 通信経路冗長性確保のためのマルチホームが実現しづらいのは, IPv6アドレス割当ポリシーが足かせになっているからではないだろうか?

現状に関する認識

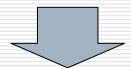
- □ 現在のIPv6割り振りは、いわゆる「プロバイダ集約型」のみ。
 - 経路表の膨張を防ぐことが第一義
 - そのため、「エンドサイト」には、レジストリから直接IPv6アドレスを割り振られることはなく、必ずLIR(プロバイダ)から割り当てることになっている。
- □ LIR(プロバイダ)は割り振られた経路を集約して広告 しなければならない
 - 割り振られたうち一部の空間を広告することは許されない

□ 従来(IPv4)型でのマルチホームができない!

エンドサイトにマルチホーム要望はあるのか?

- □ ある.
 - 例えば,
 - □ 販売チャネルとしてインターネットが重要なチャネルとなっている会社
 - □ 外部から参照される重要なサーバを持っている会社
 - □ 他社とインターネット経由で取引している会社
 - Internet VPN, Extranet など

など


□ インターネット接続の信頼性向上のため, マルチホーム接続を必要とするエンドサイトは存在する

いまある解決方法(IPv6)で救えるのか?

- □ 議論されている解決方法
 - 複数アドレスの使い分け
 - Shim6 (IETFで議論中)

など

■ 冗長性確保, エンドサイト管理, トラフィック制御の面から一長一短. BGP方式を包含する方式とはなっていない.

- □ やっぱりBGPで制御する従来の方法も必要
 - AS番号を取得し、かつて直接レジストリから割り振られたアドレス、あるいはプロバイダから割り当てられたアドレス(CIDRの一部分)を用いて、BGPで複数プロバイダと接続する方法

マルチホーム実現方法の比較

	観点		複数アドレス使い分け	Shim6	IPv4で一般的な方式 (PIアドレス+BGP)
0	冗長性確 保		× 通信できない箇所を通る Src/Dstアドレスの組を使っ た場合,通信不可となる.	△? 通信できない箇所を通る Src/Dstアドレスの組から,通 信できる組を探して切り替え る?	O BGPによる経路制御 で冗長性が確保され る
	トラフィッ ク制御 (out- gouing)		O(Δ) 経路設定で制御可能. ただ し上位プロバイダがSrc Spoofing対策を実施してい るときは制御が限定される.	○(△) 経路設定で制御可能. ただし 上位プロバイダがSrc Spoofing対策を実施している ときは制御が限定される.	O BGPの「技」を駆使し て制御可能
	トラフィッ ク制御 (in- coming)	通信を開始 する側(ク ライアント)	〇 ソースアドレスの選択で戻り (incoming)方向を制御可能	〇 ソースアドレスの選択で戻り (incoming)方向を制御可能	△ BGPの「技」では完全 な制御ができない
		通信のリク エストを受 ける側 (サーバ)	× 制御できない. ただしDNSで通知するIPア ドレスで制御する方法もある	× 制御できない. ただしTE目的で、Src/Dstアド レスの組をネゴできる仕様を Shim6が持てば可能性あり	× 制御できない.
)	エンドサイ ト全体の 管理		×(Δ) ・アドレス選択ポリシーがサイト内の各ホストに分散. ・一元的に管理するにはポリシー配布が必要	×(Δ) ・アドレス選択ポリシーがサイト内の各ホストに分散. ・一元的に管理するにはポリシー配布が必要	〇 エンドサイトの出口で 一元管理可能

提案の背景:まとめ

- □ プロバイダ非依存なIPv6アドレス割当を目指して、議論を(再度)開始することを望む
 - IPv6がインターネットビジネスの足枷となる状況を 改善しておくことが、IPv6インターネットが本格的 に広まる前に必要。

2. 提案にあたっての議論

IPv6 PIに関する論点

- □ 割当基準問題
 - だれに、どうやって割り当てる?
 - どれくらい割り当てればよい?
- □ 経路表問題
 - どれくらいマルチホームする企業がいるかな?
 - PIによって経路表が膨張する. 防止策は? 結構ルータは耐えるんじゃないの?
- □ その他: AS番号問題
 - BGP使ってマルチホームなら、AS番号も必要. AS 番号も増えるけどどうするの?

IPv6 PI 割当基準案のポイント

□割当対象について

- 現状マルチホームしているASを分析すると、ほとんどが「プロバイダ」に分類できるところ、例えばCableTV、データセンタ、地域プロバイダ、それ以外では、大学や一部の企業。
- プロバイダに分類されるところはPAを取得すると考える. (顧客割当を200, という制約があるが. .)

□ 割当条件について

- マルチホームを必要とするエンドサイトは多様. 例えば規模だけで基準を決めることは 難しい場合がある.
- しかしマルチホームの必要性が低いのにPIを割り当てるのも問題がある.
- 必要度を計る基準として、「コスト」すなわちPI割当への対価を用いてはどうか、
 - □ 経路表膨張対策へのユニバーサル基金とする?
- 経路のフィルタができるよう、ルーティングレジストリに登録してほしい。

□ 割当空間について

- PAとPIの空間を分けておくことで、PA空間での/32より長いprefixはフィルタすることができる.
- マルチホームを必要とするエンドサイトの規模はさまざま。エンドサイトの規模に応じて 割当空間を決めるのがよいが、割当手続き軽減を目的とした「固定サイズ割当」でも可。

IPv6 PIにより経路表は膨張するか?

- □ どれだけ経路表へのエントリが増えるのか?
 - 激しく増加することは考えにくい
 - □ 2つのプロバイダに接続料を払うこと自体がエンドサイトに とっては負担が大きい。
 - JPNICから割り当てられたAS番号は589ある. 企業がプロバイ ダ事業目的でなく取得しているケースは最近増えているようだが、 全体から見ると少ない. (1桁~2桁程度)
 - □ 外部から参照されるサーバ群だけが重要なら、複数プロバイダを上流に持つデータセンタを用いる方法もある。
 - →IPv6 PIは、はじめから計画的に割り振る必要がある

IPv6 PIにより経路表はどれだけ膨張するか?

- □ 予想すべき数字
 - マルチホーム企業数の予測
 - □ 日本にて、従業員300人以上の企業は12000社(H.13年総務省 統計局) (ちなみに日本の全企業数は630万社 60%は1~4人の小企

(ちなみに日本の全企業数は630万社. 60%は1~4人の小企業)

- □ 以下, 乱暴な計算.
 - 従業員300人以上の企業の10%がマルチホームした場合, 1200社.
 - 人口1億人あたり1200社とすると、世界中で60億人いるので、将来的に世界では7万2000社がマルチホームすると考えると、
 - 約7.2万経路が増加する.
- ルータが耐えられる経路数
 - □ 現時点でフルルートは19万~20万経路.
 - □ 経路数が増えることで、急激に性能低下を引き起こす限界値は どこなのか。

IPv6 PI に伴うASNの増加

- □ PIにともないASNも増加が予想される
 - 対処案1「32ビットASで対処」
 - □ 世界中でプロバイダ数を考えても、将来的に6万程度のASではもたない。
 - JPNIC IP指定事業者370程度, IAJ会員150, JAIPA会員190, 総務省届け出通信事業者数13000. . .
 - □ ASを32ビット化すれば、マルチホーム企業も楽に収容できる。
 - 移行に関する懸念はあるが...
 - 対処案2 「inconsistent AS, multiple origin を認める」
 - □ エンドサイトがマルチホームする場合, ほとんどがプロバイダ2社を利用. 3社 以上は少ない.
 - □ 2つのASと接続するだけならば、エンドサイト側はPrivate ASを用い、上位プロバイダはそのエンドサイトのPIを自ASをOriginとして広告する (inconsistent AS)
 - □ ただし、ルーティングレジストリ(IRR)にてOrigin(s)を登録しておくこと.
 - □ 懸念事項: Private ASN不足, multiple origin のコンセンサス

3. APNICへの提案内容と結果

APNIC Policy SIGへの提案

- □ マルチホーム接続を行うエンドサイト向けに、 プロバイダ非依存なIPv6アドレス空間を割り 当てることを要望する
 - Provider-independent address: 以下PIとする
 - なおご参考までに。APNIC配下では、provider-independent (PI),provider-aggregateable (PA) ではなく、
 - PI → Portable assignment (or Assigned portable)
 - PA → Portable allocation (or Allocated portable) と呼ぶ。

提案したIPv6 PI 割当基準案

- □ 割当対象
 - マルチホームをするエンドサイト (トランジットしない)。
 - エンドサイトの大きさには制約を設けない。
- □ 割当条件
 - 割当から一定期間内(3ヶ月)に, 実際にPIを用いて<u>マルチホーム</u> 接続すること.
 - 一定期間経過後、マルチホームの使用実績がなければそのアドレスは回収する
 - アドレス割り当て料を払うこと。
- □ 割り当てる空間
 - エンドサイトへの割り当てサイズは/48とする. これを超えるサイズが必要な場合は、その必要性を証明すること。
 - PI用の領域を用意. PA空間とは区別する.
 - □ 例えば、2001::/8がPAなので、PIは4001::/8とか。

審議状況

- □ もう一つPI提案が出ていた
 - Mr. Jordi Palet Martinez
- □ 相違点
 - アドレス割当サイズが/32
 - 3年間程度の時限立法
 - 割り当て対象はマルチホームするエンドサイトだけでなく、技術面・管理面で必要なエンドサイトも。

提案内容の比較

	APNIC	APNIC	ARIN
	Prop-035	Prop-034	(2005-1)
	By K. Toyama	By Jordi	By Owen and Kevin
割当対象	マルチホームするエンドサイトのみ	マルチホームするエンド サイト、あるいは技術 面・管理面で何らかの 理由があるエンドサイト	エンドサイト
割当基準	3ヶ月以内にマルチホー ムすること	IPv4のPI割当て基準と 同じ	IPv4のPI割当て基準と 同じ
アドレス空 間	PI用空間はPAとは別の 空間に	PI用空間はPAとは別 の空間に	PI用空間はPAとは別 の空間に
最小割当サイズ	/48 より広い空間が必要な場 合は、その根拠を示す	/32	/48 より広い空間が必要な 場合は、その根拠を示 す
経路表膨張 への対応	マルチホームするエンド サイトに限定することで、 PI取得者を制限する。	時限立法とし、一定期間のあと見直す。	適用後しばらくして見直 すこともある

結果

- □ (とりあえずは)日本からの提案が採用された
 - これからメーリングリスト(APNICのpolicy-sig)にて強い反対意見がなければ、 エンドサイト向けPIアドレスが創設されることになる。
- □ なぜ?
 - 全体的に「PIは必要」という意見は多かった
 - 割り当てサイズは/48の方が現実的
 - □ 経路表へ載る経路数としては/32でも/48でも同じ。ならば/32はエンドサイトに対しては大きすぎる
 - 「時限立法」はうまく行くとは思えない。

個人的所感

- □ 経路表問題に関して
 - 重要な問題だとは認識している
 - 現在のIPv4経路表はマルチホームやトラフィックエンジニアリングをするために、(昔の)ポータブルアドレスやPunching Holeでどうにもならない状況にあるのも理解している。
 - しかし、IPv6のルーティングに関する基本的なモデルはIPv4と全く変わっていない(アドレス空間が32ビットと128ビットの違いのみ)。
 - 経路表膨張防止のために、マルチホームを必要とするエンドサイトを切り捨てている「プロバイダ集約アドレスのみが routable」という現在の方針はナンセンス。
 - □ もちろん、複数アドレス使い分け技術やShim6技術がカバーする部分もあるので、これらを全面否定するものではない。

今後のIPv6マルチホーム議論への対応

- □ レジストリにて、IPv6 PIアドレス割当を認めつ つある。
 - ARINでは決定、APNICでも認める方向に。
 - RIPE、Lacnic、AfriNicでも議論はされている
- あとはオペレーションするうえで問題が生じないよう、各種議論を見守っていく必要がある。
 - IPv6 PIアドレス割当ポリシー内容に関する議論
 - 経路フィルタ議論、ルーティングレジストリ議論

- □ご清聴ありがとうございました。
- □ ご質問・ご意見ございましたら、ぜひ。

謝辞: 提案を支えて頂いた有識者のみなさま

- □ V6pi検討グループのみなさま(敬称略、五十音順)
 - 荒野高志(インテックネットコア)
 石井利教(インターネットマルチフィード)
 伊藤公佑(IRIユビテック)
 大石憲且(ネクステック)
 奥谷泉(JPNIC)
 西野大(JPIX)
 穂坂俊之(JPNIC)
 藤崎智宏(NTT)
- □ 技術面でのレクチャを頂いたみなさま(敬称略、五十音順)
 - 新善文(アラクサラ) 鈴木伸介(アラクサラ) 松本存史(NTT)